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Abstract 

Dengue is a severe disease which is increasingly prevalent in Singapore. Thus, it is imperative to 

find a solution to better monitor the population of Aedes mosquitoes, which transmit dengue. This 

research presents key contributions in the two areas: ML optimisation for robustness and edge 

networking. Past research involving ML identification of mosquito species focuses on ML 

architecture, with little discussion of practical deployment. This research is a novel contribution 

as a use-case of an ML approach for Aedes mosquito identification under different practical 

conditions, and has found that an amalgamation of data augmentation techniques is best for 

improving model performance. Another gap in current research is the lack of investigation of the 

application of networking in large-scale monitoring of the Aedes mosquito population. However, 

this is vital to reduce manpower in Aedes population monitoring by networking the Gravitraps at 

the edge to a command centre. Therefore, this research addresses this gap by demonstrating a novel 

integration of the state-of-the-art ML model YOLO (You Only Look Once) with networking on 

edge devices for remote monitoring of Aedes population with 100% accuracy and real-time 

networking with inference speed of 112ms on an edge device. 

 

1 Introduction 

1.1 Background and Rationale for Choice of Topic 

Dengue is a disease transmitted to humans through the bite of an infected Aedes mosquito [1]. 

About 1 in 20 people who are infected with dengue will develop severe symptoms, which can 

result in shock, internal bleeding, and even death [2].  

 

According to the National Environmental Agency (NEA), the Aedes mosquito population in the 

Singapore community was about 48 per cent higher in March this year (2022) compared to the 

same period in 2021 [3]. This points to a worrying trend of an increasing number of dengue cases 

in Singapore. 

 

Given the severity of the disease, as well as its increasing prevalence among 

the populace, it is imperative to find a solution to reduce the spread of dengue. 

Currently, traps are deployed to monitor the distribution of mosquitoes in 

Singapore. The existing mechanism deployed by NEA is the Gravitrap [4]– 

this attracts female Aedes adult mosquitoes looking for sites to lay their eggs 

with a hay-infused water, before trapping them with a sticky lining [5]. 

Despite its advantage of its simplicity in design, there are limitations to the 

effectiveness of this mechanism in reducing dengue cases. The primary 

drawback is the significant amount of human intervention involved— the 

Gravitraps are checked on a fortnightly basis to ensure proper functioning and 

mosquitoes have to be sent to a lab for manual identification [6]. 

Fig. 1 Image of 

Gravitrap 
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1.2 Proposed Solution 

In this study, a Machine Learning (ML) approach combined with networking across devices is 

proposed to remotely and effectively differentiate Aedes mosquitoes from non-Aedes mosquitoes 

in the Gravitrap to reduce cost and manpower required to track the distribution of Aedes 

mosquitoes across the country.  

 

Currently, research into using ML to differentiate between various species of mosquitoes primarily 

focus on the ML architecture rather than the deployment of the model in practical scenarios. For 

example, Kittichai et al. examined the robustness of their ML model in identifying the species of 

mosquitoes, but did not go beyond that to look at the practical deployment of the model [7]. Yin 

et al. also investigated the accuracy of an ML model that classified mosquito species based on their 

wingbeat sounds, but similarly did not look into the practical deployment of their model in a 

specific use case [8]. Meanwhile, Surya et al. compared the robustness of different ML networks, 

but did not do so with reference to a specific practical deployment [9]. As for socket networking, 

there is currently no available research into its deployment in the identification of mosquitoes in 

edge devices.  

 

Therefore, this research paper presents the following key contributions: 

a) Investigation into the deployment of ML model in a specific use case (ie. in the Gravitraps 

around Singapore). The deployment of the ML model for mosquito classification in this 

practical situation poses many challenges, such as potential poor lighting, poor camera 

resolution and multiple mosquitoes of different species in the trap at the same time. Thus, 

this research is a novel contribution to this field as it looks into addressing these issues 

during optimisation of the ML model for robust classifications under practical conditions. 

b) Integration of networking with use of ML model at the edge. This is novel because no 

research has been done to combine ML with networking in this field, and also solves issues 

that come with the specific use-case of ML at the Gravitraps, such as low power of the 

edge devices.  

 

2 Methodology 

2.1 Data Collection and Processing 

The data was collected from various sources to ensure diversity. For Aedes mosquitoes, the images 

were obtained from Kaggle and additional Internet sources, while the images of non-Aedes 

mosquitoes were obtained from Dryad and additional Internet sources (see appendix). Such diverse 

sources were chosen to prevent homogeneity of the dataset, which could negatively impact the 

performance of the dataset through overfitting [10].  

 

To prevent class imbalance which negatively affects the performance of the ML model [11], the 

proportion of images of Aedes mosquitoes and non-Aedes mosquitoes were kept at 50-50. The 

dataset was then split in an optimal 70-20-10 manner across the training, validation and test 

datasets.  

 

2.2 ML Approach 

You Only Look Once (YOLO) is used as the ML model. The YOLO detection network has 24 

convolutional layers followed by 2 fully connected layers, and the algorithm works by dividing 
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the image into N grids, each having an equal dimensional region of SxS. Each of these N grids is 

responsible for the detection and localization of the object it contains. These grids then predict B 

bounding box (bbox) coordinates relative to their cell coordinates, along with the object label and 

probability of the object being present in the cell [12]. The detection process consists of three 

stages– pre-processing, inference and non-max-suppression (NMS). Pre-processing transforms the 

data into a more understandable format, and addresses potential issues with the data [13]. 

Meanwhile, inference involves utilising data points to calculate the classification output [14]. 

Lastly, NMS addresses the issue of multiple bboxes being generated for each image, by selecting 

the best bbox for an object and “suppressing” all other overlapping bboxes [15]. 

 

 
Fig. 2 Overview of YOLO architecture 

 

YOLO is a state-of-the-art object detector, which has a relatively high mean average precision 

(mAP) and much faster speeds than other real-time object detection networks such as R-CNN and 

DPM [12]. This is a critical consideration in this research because the detection system should 

ideally be both fast and accurate to quickly and accurately send information about the classification 

of mosquitoes in the traps. This allows information on the population distribution of Aedes 

mosquitoes to be compiled in real-time, successfully achieving the aim of efficient monitoring of 

the Aedes mosquito population in Singapore. 

 

2.3 Model Optimisation 

Optimising the performance of the ML model can be done primarily through improving the dataset 

and altering the hyperparameters of the code [16]. With each parameter changed, the performance 

of the model was evaluated through the proportion of true positives as reflected in the confusion 

matrix, mean average precision (mAP) and the number of successful classifications of the bboxes. 

The proportion of true positives was the focus in the analysis of the confusion matrix because the 

main aim of the ML model is to identify Aedes mosquitoes accurately– the accurate identification 

of non-Aedes mosquitoes is less consequential. The background column in the confusion matrix 

refers to other background objects missed by the detector, which holds little significance in this 

research given the black background in the images taken of mosquitoes in the Gravitrap [17]. 

 

2.3.1 YOLO Version 

First, the effect of the YOLO version used on the performance of the model was investigated. The 

experimentation dataset size was kept constant at 600 images (300 images per class), and the 

hyperparameters were kept constant at 8 batches and 50 epochs.  
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2.3.2 Dataset Size 

Next, the effect of dataset size on the performance of the model was investigated. The dataset size 

was varied between 200 images (100 images per class), 600 images (300 images per class) and 

1000 images (500 images per class). The hyperparameters were kept constant at 8 batches and 50 

epochs.  

 

2.3.3 Hyperparameter Optimisation 

To improve the performance of the model, hyperparameter tuning was investigated, specifically 

the hyperparameters of batch and epoch number. This was done through random sampling, one of 

the most commonly used methods for hyperparameter optimisation, where a search space of 

hyperparameter values was defined before testing values in that domain [18]. 

 

2.3.4 Data Augmentation 

The effect of data augmentation on the performance of the model was then investigated as this is 

crucial given that the quality of images captured in the Gravitrap might be compromised by 

environmental conditions. The optimal model of YOLOv5 and optimal dataset size of 1000 images 

were used with the hyperparameters kept constant at 8 batches and 50 epochs. The models were 

compared by having them detect the same set of 100 images that included images augmented with 

the various augmentation techniques (20 per augmentation technique, and 20 non-augmented 

images), and comparing their accuracy and ability to generate bboxes around the mosquitoes. 

 

2.3.4.1 Blurring 

The first effect carried out to augment the dataset was blurring. This effect was chosen because in 

the trap, the sharpness of the image cannot be guaranteed due to potential pertinent limitations, 

such as camera resolution with the small size of the mosquitoes, and the camera shutter speed with 

the possible motion of the mosquitoes. Out of the 1000 images, 100 were chosen from each class 

to be blurred (see appendix). 

 

2.3.4.2 Addition of Noise 

The next effect carried in data augmentation was the addition of noise. This effect was chosen 

because the amount of noise in images could be affected by factors such as electricity and heat 

[19], which is present in the trap when the camera and ML model are deployed. Out of the 1000 

images, 100 were chosen from each class to have noise added (see appendix).  

 

2.3.4.3 Merging Images 

Merging of images was also conducted (see appendix) due to the consideration that there may be 

more than one mosquito in the trap at any point of time, which could result in the image capturing 

more than one mosquito. Therefore, it is essential to ensure that the model can identify the species 

of mosquitoes even when there is more than one mosquito present. 

 

2.3.4.4 Changing Exposure 

Another data augmentation method tested was changing the exposure of images (see appendix), 

the rationale being that in the trap, the exposure of the images may differ at different times of the 

day.  
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2.3.4.5 Amalgamation of Dataset Augmentation Techniques 

After investigating different dataset augmentation techniques individually, these techniques were 

combined to create the optimal dataset. Out of 1000 images, 100 images for each class for each 

augmentation were included. The goal was to have an optimal dataset which is trained on highly 

diversified data to be able to accurately classify Aedes mosquitoes in varied environments.  

 

2.4 Networking for Edge Intelligence 

As a proof of concept, networking was conducted between Raspberry Pis representing the 

deployment of the ML model on the islandwide mosquito traps, and a Jetson Nano representing 

the command centre. Factors such as where image processing was conducted were investigated to 

optimise the efficiency of the network.  

 

Socket programming was utilised for networking. Sockets facilitate the transmission of 

information across the network, allowing data to be centralised from edge devices to the main 

server [20]. The network involves client-server communication, where the server is a powerful 

computer with high processing power while the client relies on the server for more CPU-intensive 

processing tasks such as model inference [21]. 

 

Two Raspberry Pis were used to represent the deployment of the ML model at the Gravitraps. 

They are optimal as they are low-power devices that do not need to be connected to a power source 

and can operate from batteries or a power bank, and more than one was used to show the possibility 

of having multiple traps around the island connected to a command centre. Meanwhile, the Jetson 

Nano is a higher-power device that needs to be connected to a power source, hence it was used to 

represent the command centre. 

 

 
Fig. 3 Overview of hardware involved in networking stage 

 

3 Results and Discussion 

3.1 Model Optimisation 

The effects of YOLO version, dataset size, hyperparameter optimisation and data augmentation 

techniques on the performance of the model were investigated. 

 

3.1.1 YOLO Version 

When YOLOv3 was used, the proportion of true positives was 0.95, while the proportion of true 

negatives was 1.00 and the mAP was 0.995. The proportion of test images with bboxes, meanwhile, 

was 46.7% (28 out of 60 images).  
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When YOLOv5 was used, the proportion of true positives was 0.98, while the proportion of true 

negatives was also 0.98. The mAP was 0.994, and the proportion of test images with bboxes was 

100% (60 out of 60 images). (See appendix for confusion matrices) 

 

 
Fig. 4 Comparison of performance of YOLOv3 and YOLOv5 

 

The results show that YOLOv5 significantly improves the performance of the ML model as the 

proportion of true positives, which is central to the ultimate goal to detect Aedes mosquitoes, 

increases when YOLOv5 is used in place of YOLOv3. Furthermore, the significant difference in 

proportion of test images with bboxes around them proves that YOLOv5 enhances the performance 

of the model as it improves the ability of the model to detect the presence of mosquitoes. 

Additionally, according to literature reports, YOLOv5 reduces inference speed, increases object 

detection accuracy, and enhances localization accuracy [22]. Therefore, it can be concluded that 

YOLOv5’s performance surpasses YOLOv3’s. 

 

3.1.2 Dataset Size 

When 200 images were used, the proportion of true positives was 1.00, while the proportion of 

true negatives was 0.90 and the mAP was 0.993. The proportion of test images with bboxes, 

meanwhile, was 100% (20 out of 20 images).  

 

When 600 images were used, the proportion of true positives was 0.98, while the proportion of 

true negatives was 0.98 and the mAP was 0.994. The proportion of test images with bboxes, 

meanwhile, was 100% (60 out of 60 images).  

 

When 1000 images were used, the proportion of true positives was 1.00, while the proportion of 

true negatives was 0.98 and the mAP was 0.994. The proportion of test images with bboxes, 

meanwhile, was 100% (100 out of 100 images). (See appendix for confusion matrices) 
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Fig. 5 Comparison of performance of models with different dataset sizes 

 

As seen from Fig. 5, the primary difference resulting from the dataset size is the proportion of true 

negatives which increases with dataset size. Therefore, it can be concluded that the increase in 

dataset size enhances the performance of the ML model.  

 

3.1.3 Batch Number 

The number of batches tested were 8, 16, 32 and 64. 

 

 
Fig. 6 Comparison of performance of model when different batch numbers are used  

 

From Fig. 6, it can be observed that when 64 batches are used, the performance of the model is 

enhanced as the proportion of true positives, proportion of true negatives and mAP are increased. 

Nonetheless, the overall effect of batch number on performance of the model is negligible as the 

proportion of true positives and true negatives and the mAP remain relatively constant. (See 

appendix for confusion matrices) 

 

3.1.4 Epoch Number 

The effect of epoch number on performance of the model was then investigated. Specifically, the 

effect of decreasing the number of epochs on the performance was studied. Intuitively, increasing 

the number of epochs would enhance the performance of the model, hence it would be more 

insightful to look into the effect of decreasing the epoch number, especially since decreased epoch 

number reduces the training time.  
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Fig. 7 Comparison of performance of model when different epoch numbers are used  

 

From Fig. 7, it can be seen that the epoch number has no clear effect on the performance of the 

model, apart from the significantly lower mAP when 10 epochs are used. Therefore, if a shorter 

training time is the priority, epochs less than 50 but more than 10 can be used to train the model. 

(See appendix for confusion matrices) 

 

3.1.5 Data Augmentation 
Table 1. Results of comparison of data augmentation techniques 

Augmentation 

technique 

Number of images with 

no bbox 

Number of inaccurate 

classifications 

Accuracy rate 

None 2  

(1 unaugmented, 1 merge) 

0 98.0% 

Blur 6 

(1 unaugmented, 3 noise,  

2 merge) 

1 93.0% 

Noise 3 

(1 unaugmented, 2 merge) 

0 97.0% 

Merge 2 

(1 unaugmented, 1 noise) 

0 98.0% 

Exposure 1 

(1 merge) 

2 97.0% 

Everything 0 0 100.0% 

 

From the table, it is evident that the dataset that included all data augmentations performed the 

best given that all images had bboxes around them, indicating the model’s ability to identify the 

mosquito in every image with a 100% accuracy rate. It can also be observed that models with 

datasets treated with only single augmentation techniques performed worse when classifying 

images treated with other augmentation techniques. However, these models, especially blur,  

performed worse than the dataset with no augmentation applied at all. A plausible explanation 



Page 9 

would be that some models with single augmentation were overfitted to images with that particular 

augmentation, and were thus less accurate in classifying other images. Therefore, it can be 

concluded that if data augmentation is to be used to improve the model, a variety of them should 

be used together rather than only one technique at a time.  

 

3.2 Networking for Edge Intelligence 

Since the aim of the deployment of the ML model is to track the Aedes mosquito population in 

real-time, it was crucial to maximise the speed of the processing of each image. To reduce the 

amount of time it took to make an inference on image, the YOLOv5 model was loaded before it 

entered a loop of sending images between the Raspberry Pi and Jetson Nano, since the model takes 

a substantial amount of time to load. The model used was the optimal one that was trained on a 

dataset that included an amalgamation of data augmentation techniques 

 

Another consideration regarding the inference speed was where the processing of the image would 

be implemented. Thus, the inference speeds on the Raspberry Pi and Jetson Nano were compared 

by taking the mean of the inference timings of 100 images. Since the YOLOv5 inference process 

is split into three parts– pre-processing, inference and non-max-suppression, the overall inference 

timing was taken to be the sum of the time taken for these three stages.  

 
Fig. 8 Comparison of inference timing of Jetson Nano and Raspberry Pi

 

As evidenced by Fig. 8, the Jetson Nano takes a shorter time overall for inference. Therefore, while 

the images were captured on the Raspberry Pi, they were sent over a network to the Jetson Nano 

to be processed.  

 
Fig. 9 Overview of Networking Pipeline 
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4 Conclusion 

Overall, this report has investigated the effects of key data augmentation techniques, which are 

essential to the robust performance of the ML model in the Gravitraps operating in challenging 

practical conditions. This research has also found that an amalgamation of data augmentation 

techniques proves more effective in enhancing model performance as compared to using single 

augmentation techniques, and this finding has enabled the design of an optimal ML model for 

identification of Aedes mosquitoes.  

 

Another key contribution of this study lies in the integration of ML with networking of the edge 

devices (Raspberry Pis) to the Jetson Nano, demonstrating the possibility of efficient edge 

deployment of ML models at Gravitraps around the country and the transfer of information back 

to the command centre to reduce manpower required. Overall, with the final model achieving an 

accuracy rate of 100% and an average 112ms inference time on the  Jetson Nano, this paper 

presents an accurate and efficient model to track the Aedes mosquito population in Singapore.  

 

5 Limitations and Future Work 

The limitations of this research primarily concern the practical deployment of the ML model on 

the traps.  

 

Future expansion of the ML model can include automating the retraining of the model with the 

new live images captured in deployment. By conducting online learning, the ML model can 

continuously upgrade itself as a sustainable model for Aedes monitoring in the long-run.  

 

Additionally, the model currently receives images to classify. Hence, the possibility of having a 

24-hour video streaming function could be investigated to constantly survey the presence of 

mosquitoes in the trap. Feasibility studies could be conducted regarding the power consumption 

of such edge devices. 

 

Furthermore, the networking test bed makes use of a router. The Wi-Fi networking is a good proxy 

and a smaller testbed for this research. In practical deployment with more devices to be networked, 

this model can be easily transferred onto existing mobile cellular networks islandwide. The 

Raspberry Pis, as the edge devices, also have functionalities to enable connection to mobile 

networks. 

 

Nevertheless, this research still presents pertinent contributions to the use case of the Aedes 

outbreak in Singapore, and it can similarly be adapted for the monitoring of other related diseases 

such as malaria and zika that require object detection and networking. 
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Appendix 

Examples of Dataset Images 

 

  

Example of image from Kaggle dataset Example of image from the Internet 

 
 

Example of image from Dryad dataset Example of image from the Internet 
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Examples of Blurred Images 

 

  

Example of blurred image of Aedes mosquito Example of non-blurred image of Aedes 

mosquito 

 

 

Examples of Images with Noise Added 

 

  

 Example of image of Aedes mosquito with 

noise added 

Example of image of Aedes mosquito with no 

noise added 
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Examples of Merged Images 

 

 
 

 

Example of merged image of 1 Aedes 

mosquito and 1 non-Aedes mosquito 

Example of merged image of 2 Aedes 

mosquitoes and 1 non-Aedes mosquito 
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Examples of Images with Altered Exposure 

 

  

Example of image of Aedes mosquito with 

increased exposure  

Example of image of Aedes mosquito with 

non-altered exposure 

  

Example of image of Aedes mosquito with 

decreased exposure  

Example of image of Aedes mosquito with 

non-altered exposure 
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Confusion Matrices Obtained when Comparing YOLO Version 

 

  

Confusion matrix when YOLOv3 was used 

(600 image dataset) 

Confusion matrix when YOLOv5 was used 

(600 image dataset) 
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Confusion Matrices Obtained when Comparing Dataset Size 

 

  

Confusion matrix when 200 images were used Confusion matrix when 600 images were used 

 

Confusion matrix when 1000 images were used 
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Confusion Matrices Obtained when Batch Numbers are Varied 

 

  

Confusion matrix when 8 batches are used Confusion matrix when 16 batches are used 

  

Confusion matrix when 32 batches are used Confusion matrix when 64 batches are used 
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Confusion Matrices Obtained when Epoch Number is Varied 

 

  

Confusion matrix when 10 epochs are used Confusion matrix when 20 epochs are used 

  

Confusion matrix when 30 epochs are used Confusion matrix when 40 epochs are used 

 

Confusion matrix when 50 epochs are used 
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Data 

 

Mosquito Classification Data Source 

Aedes  Kaggle: https://www.kaggle.com/datasets/pradeepisawasan/Aedes-

mosquitos 

Non-Aedes  Dryad: https://doi.org/10.5061/dryad.z08kprr92 

 

https://www.kaggle.com/datasets/pradeepisawasan/aedes-mosquitos
https://www.kaggle.com/datasets/pradeepisawasan/aedes-mosquitos
https://doi.org/10.5061/dryad.z08kprr92

